A password consists of two alphabets from English followed by three numbers chosen from 0 to 3.
If repetitions are allowed, the number of different passwords is
An equilateral triangle is inscribed in the parabola $y^{2} = 4ax$, such that one of the vertices of the triangle
coincides with the vertex of the parabola. The length of the side of the triangle is:
A chain of video stores sells three different brands of DVD players. Of its DVD player sales, 50% are
brand 1, 30% are brand 2 and 20% are brand 3. Each manufacturer offers one year warranty on parts
and labor. It is known that 25% of brand 1 DVD players require warranty repair work whereas the corresponding
percentage for brands 2 and 3 are 20% and 10% respectively. The probability that a randomly selected purchaser
has a DVD player that will need repair while under warranty, is:
The locus of the intersection of the two lines $\sqrt{3} x-y=4k\sqrt{3}$ and $k(\sqrt{3}x+y)=4\sqrt{3}$, for different
values of k, is a hyperbola. The eccentricity of the hyperbola is:
Constant forces $\vec{P}= 2\hat{i} - 5\hat{j} + 6\hat{k} $ and $\vec{Q}= -\hat{i} + 2\hat{j}- \hat{k}$ act on a particle. The work done when the particle is
displaced from A whose position vector is $4\hat{i} - 3\hat{j} - 2\hat{k} $, to B whose position vector is $6\hat{i} + \hat{j} - 3k\hat{k}$ , is:
For the vectors $\vec{a}=-4\hat{i}+2\hat{j}, \vec{b}=2\hat{i}+\hat{j}$ and $\vec{c}=2\hat{i}+3\hat{j}$, if $\vec{c}=m\vec{a}+n\vec{b}$ then the value of m + n is
In a group of 200 students, the mean and the standard deviation of scores were found to be 40 and 15,
respectively. Later on it was found that the two scores 43 and 35 were misread as 34 and 53, respectively. The corrected mean of scores is:
If $\alpha$ and $\beta$ are the roots of the equation $2x^{2}+ 2px + p^{2} = 0$, where $p$ is a non-zero real number, and $\alpha^{4}$ and $\beta^{4}$ are the roots of $x^{2} - rx + s = 0$, then the roots of $2x^{2} - 4p^{2}x + 4p^{4} - 2r = 0$ are:
If $\vec{A}=4\hat{i}+3\hat{j}+\hat{k}$ and $\vec{B}=2\hat{i}-\hat{j}+2\hat{k}$ , then the unit vector $\hat{N}$ perpendicular to the vectors $\vec{A}$ and $\vec{B}$ ,such that $\vec{A}, \vec{B}$ , and $\hat{N}$ form a right handed system, is:
The sum of two vectors $\vec{a}$ and $\vec{b}$ is a vector $\vec{c}$ such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=2$. Then, the magnitude of $\vec{a}-\vec{b}$ is equal to:
From three collinear points A, B and C on a level ground, which are on the same side of a tower, the angles of elevation of the top of the tower are 30°, 45° and 60° respectively. If BC = 60 m, then AB is:
If the foci of the ellipse $b^{2}x^{2}+16y^{2}=16b^{2}$ and the hyperbola $81x^{2}-144y^{2}=\frac{81 \times 144}{25}$ coincide, then the value of $b$, is
There are 8 students appearing in an examination of which 3 have to appear in Mathematics paper and the remaining 5 in different subjects. Then, the number of ways they can be made to sit in a row, if the candidates in Mathematics cannot sit next to each other is
If A, B and C is three angles of a ΔABC, whose area is Δ. Let a, b and c be the sides opposite to the
angles A, B and C respectively. Is $s=\frac{a+b+c}{2}=6$, then the product $\frac{1}{3} s^{2} (s-a)(s-b)(s-c)$ is equal to
A box contains 3 coins, one coin is fair, one coin is two headed and one coin is weighted, so that the
probability of heads appearing is $\frac{1}{3}$ . A coin is selected at random and tossed, then the probability that head appears is
If a vector $\vec{a}$ makes an equal angle with the coordinate axes and has magnitude 3, then the angle between $\vec{a}$ and each of the three coordinate axes is
If $f(x)=\left\{\begin{matrix} \frac{sin[x]}{[x]} &, [x]\ne0 \\ 0 &, [x]=0 \end{matrix}\right.$ , where [x] is the largest integer but not larger than x, then $\lim_{x\to0}f(x)$ is
A student takes a quiz consisting of 5 multiple choice questions. Each question has 4 possible answers. If a student is guessing the answer at random and answer to different are independent, then the probability of atleast one correct answer is
If PQ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that OPQ is an equilateral triangle,
where O is the centre of the hyperbola, then which of the following is true?
The average marks of boys in a class is 52 and that of girls is 42. The average marks of boys and girls
combined is 50. The percentage of boys in the class is